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1. Introduction

The duality among gauge theories and string theory is a very important subject in modern

theoretical physics. An important issue which is getting much attention is the ability

of string theory to reproduce known results of the perturbative gauge theory [1, 2]. In

such a regime, the string theory is usually formulated in terms of a strongly coupled non

linear σ-model which needs some extra technique to get solved. This extra technique has

been developed in the form of an alternative gauged linear σ-model which reproduces

the non linear one in the perturbative regime and allows a perturbative expansion in the

previously inaccessible regime [3]. This program has been fully realized in the case of the

three dimensional Chern-Simons theory by rephrasing its ’t Hooft expansion in terms of a

topological string on the conifold [4].

The case we will try to face here is the string dual of a particular sector of the N = 4

SYM in four dimensions, namely the circular 1/2 BPS Wilson loops as calculated in [5]

and recently confirmed in [6].

The AdS5 × S5 string has been shown to admit a formulation in the pure spinor

framework [7]. In particular it has been shown that to calculate 1/2-BPS string amplitudes,

one can use a topologically A-twisted version of the N = (2, 2) σ-model on the fermionic

coset U(2, 2|4)/U(2, 2) × U(4) [8, 9]. This non-linear σ-model can be obtained by an

auxiliary gauged linear one which has been proposed as the correct framework to describe

the string theory in the large curvature regime.

The aim of this letter is to collect a set of arguments which lead to reproduce the

known perturbative gauge theory results alluded above by making use of the Berkovits-

Vafa proposal [9]. Our line of reasoning goes as follows (see figure 1).

We first consider the A-model for closed strings on AdS5 × S5 and its gauged linear

σ- model in the limit of small Fayet-Illiopoulos which corresponds to the large curvature

regime. In this limit it was noticed already in [9, 10] that the model reduces to the invariant
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AdS5 × S5

A-model

N units of flux

-
Mirror

uv − ηχ = 1 − e−t

Deformed
Super-conifold

B-model

N units of flux

-
Geometric Transition

Resolved sconifold
B-model

N D-branes
⇓

Gaussian Matrix
Model

Figure 1: The duality chain: the mirror symmetry maps to the B-model on the deformed su-

perconifold and the geometric transition to the resolved one corresponding to the gaussian matrix

model.

quotient
(

ĈP
(3|4)

)4

//S4. Its maximal orbit under the cyclic permutation is isomorphic

to a single copy of the superprojective space ĈP
(3|4)

. We can consider then a mirror of

such a geometry in the form of a deformed fermionic conifold, dubbed superconifold [11].

This is actually the cotangent bundle over S(1|2) and we get the closed B-model with N -

units of flux along the S(1|2). We can follow then the theory in a dual formulation after

a geometric transition analogous to the Dijkgraaf-Vafa one [13 – 15]. In the superconifold

case one calculates the minimal resolution as the resolved superconifold over ĈP
(0|1)

=
{

C(1|1) \ (0, 0)
}

/C∗. This will be discussed in detail in the main text. Here the dual

theory is that of N D-branes wrapping the base manifold and therefore the theory is

described by the dimensional reduction of the holomorphic U(N) Chern-Simons theory to

the branes [16]. This results to be the hermitian N ×N gaussian matrix model similar to

the purely bosonic case [13].

In order to generate gauge invariant observables in the topological string, let us

now go back to the Berkovits-Vafa σ-model and look for the A-branes there. These are

wrapped around special lagrangians of the supercoset and their geometry is dictated by

the possible supersymmetric boundary conditions. On top of the AdS4 branes considered

in [9], there are also other possibilities among which we choose that of the real supercoset

OSp(4∗|4)/SO∗(4)×USp(4). As such, the choice of Dirichlet boundary conditions for open

strings on such a submanifold breaks the original U(2, 2|4) isometry to OSp(4∗|4). Notice

that this is the same symmetry breaking which corresponds to placing 1/2-BPS circular

Wilson loops in Minkowski space1 as in [5]. These D-branes can be shown to correspond

to D5-branes wrapping AdS2×S
4 geometries [18]. As such, these states realize the Wilson

loops in an alternative way — suitable for the large curvature regime — compared to the

string world-sheet with boundary condition along the loop on the AdS5 boundary. Ana-

logue constructions were actually elaborated in [19] (and references therein) from the point

of view of the effective Dirac-Born-Infeld theory, while it is obtained here directly for the

microscopic theory.

We have then to follow these D-branes along the duality map described above (see

figure 2). Actually the lagrangian cycle is mapped to a transverse non-compact holomorphic

cycle in the superconifold geometry. Therefore, the computation of the corresponding

1A detailed calculation of this can be found in [17].
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Figure 2: The above duality chain for the AdS2 × S4-branes. Following them we obtain gaussian

matrix model amplitudes.

topological string amplitude gets mapped to the computation in the gaussian matrix model

of the corresponding observables. The relevant observables are obtained by integrating over

the open strings with mixed boundary conditions similar to [20].

This construction therefore leads to express the topological string amplitudes for the A-

model on the fermionic quotient with AdS2×S
4-branes boundary conditions as correlators

of Wilson loops in the gaussian matrix model. As such, these amplitudes should obey

the holomorphic anomaly equations of BCOV [21]. It has been actually proved that it

is indeed the case in [22]. This not only applies to the construction in [13], but more in

general also to the ones given in [23]. This consistency check strongly supports the validity

of our derivation.

The content of this letter is organized as follows. In the next section we propose a

construction of the duality chain leading from the AdS5 × S5 closed string to the gaussian

matrix model. In the subsequent one we follow the D-branes along the above duality

chain and calculate the observables. The last section is left for consistency checks and few

comments.

2. Strings in AdS5 × S5 and the mirror geometry

2.1 Gauged linear σ-model of AdS5 × S5 string theory

Type IIB String theory on AdS5 ×S
5 has been recently formulated using pure spinors as a

gauged linear σ-model in [9]. It was there shown that the pure spinor IIB superstring action

on AdS5×S
5 can be written up to BRST exact terms as a nonlinear A-model action defined

on a Grassmannian coset whose lowest components take values in the supercoset U(2,2|4)
U(2,2)×U(4)

Spure spinors = SA−model +QQ̄X (2.1)

Therefore, as far as the calculation of 1/2-BPS observables concerns such an A-model is,

upon topological twist, equivalent to IIB string theory on AdS5 × S5.

The worldsheet variables are fermionic superfields ΘA
J and Θ̄J

A where A = 1 to 4 and

J = 1 to 4 label fundamental representations of SU(2, 2) and SU(4) respectively. These

N = 2 chiral superfields can be expanded in components as

ΘA
J (κ+, κ−) = θA

J + κ+Z
A
J + κ−Ȳ

A
J + κ+κ−f

A
J (2.2)

Θ̄J
A(κ̄+, κ̄−) = θ̄J

A + κ̄+Z̄
J
A + κ̄−Y

J
A + κ̄+κ̄−f̄

J
A

– 3 –
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where (κ+, κ̄+) are left-moving and (κ−, κ̄−) are right-moving Grassmannian parameters.

The 32 lowest components θA
J and θ̄J

A are related to the 32 fermionic coordinates of

the P SU(2,2|4)
SU(2,2)×U(4) supercoset which parametrizes the AdS5 × S5 superspace. The 32 bosonic

variables ZA
J and Z̄J

A are twistor-like variables combining the 10 spacetime coordinates of

AdS5 and S5 with 11 pure spinors (λA
J , λ̄

J
A) of the pure spinor formalism. They can be

expressed explicitly as follows

ZA
J = HA

A′(x)(H̃−1(x̃))J
′

J λ
A′

J ′ (2.3)

Z̄J
A = (H−1(x))A

′

A H̃J
J ′(x̃)λ̄J ′

A′

where the pure spinors are written in SO(4, 1) × SO(5) notation. Here HA
A′ is a coset

representative for the AdS5 coset SU(2,2)
SO(4,1) where A′ = 1 to 4 is an SO(4, 1) spinor index and

H̃J
J ′(x̃) is a coset representative for the S5 coset SU(4)

SO(5) where J ′ = 1 to 4 is an SO(5) spinor

index. Similarly, the conjugate twistor-like variables Y A
J and Ȳ J

A are constructed from the

conjugate momenta to the pure spinors and fA
J and f̄J

A are auxiliary fields.

As discussed in [9], the U(2, 2|4) invariant action for the topological A-model can be

written in the mentioned N = (2, 2) superfield notation as

S = t

∫

d2z

∫

d4κTr
[

log(δJ
K + Θ̄J

AΘA
K)
]

(2.4)

where t is a constant parameter proportional to the σ-model coupling R2
AdS5

/α′.

This A-model is based on a Grassmannian coset U(2,2|4)
U(2,2)×U(4) and as it was shown already

in [10], a nonlinear σ-model action based on a Grassmannian can be obtained as the Higgs

phase of an appropriate gauged linear σ-model.

This is obtained by introducing a U(4) worldsheet gauge field V R
S , together with an

appropriate set of matter fields transforming in the fundamental representation of the gauge

group

ΦΣ
R(z, z̄, κ+, κ−), Φ̄R

Σ(z, z̄, κ̄+, κ̄−) (2.5)

where R,S = 1 to 4 are local gauge U(4) indices, and Σ = (A, J) is referred to the global

A and J indices for U(2, 2) and U(4) respectively. Note that ΦA
R is a fermionic superfield

whereas ΦJ
R is a bosonic superfield. The gauged linear sigma model can be written in

U(2, 2|4) , N = (2, 2) and gauge invariant notation as

S =

∫

d2z

∫

d4κ[Φ̄S
Σ (eV )RS ΦΣ

R − tT rV ] (2.6)

where t enters as the Fayet-Illiopoulos parameter. When t is nonzero, one can show using

the equations of motion that the action is equivalent to the A−model action (2.4) with the

following parametrization for the chiral and antichiral superfields ΘA
J and Θ̄J

A as follows

ΘA
J ≡ ΦA

R(ΦJ
R)−1, Θ̄J

A ≡ Φ̄R
A(Φ̄R

J )−1 (2.7)

– 4 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
0

As it is noticed in [9], in the small t regime, the above gauged linear σ-model is equivalent,2

by applying an observation at the end of [10], to the geometric quotient
(

ĈP
(3|4)

)4
//S4.

For reasons which will be clear in the next section (see the discussion just after (3.7)),

let us concentrate on the twisted sector corresponding to the cyclic permutation. This is

equivalent to a single copy of the twistorial space ĈP
(3|4)

.

2.2 Mirror symmetry, superconifolds and matrix model

The first step we need to perform now is a mirror symmetry to relate to the B-model. This

has been already calculated in [25] and further elaborated in [11] for the case at hand.

Let us then consider the A-model on the ĈP
(3|4)

with bosonic and fermionic coordi-

nates φI and φA. Since all the fields have charge one under the remnant U(1) gauge group,

the D-term equation can be written, in terms of the first components of the superfields, as

4
∑

I=1

|φI |2 +

4
∑

A=1

|φA|2 = r (2.8)

we can define the dual fields which appear in the mirror theory

ReY I = |φI |2 (2.9)

ReXA = −|φA|2

The superpotential for the mirror Landau-Ginzburg description results to be

W̃ =
4
∑

I=1

e−Y I

+
4
∑

A=1

e−XA

(1 + ηAχA) (2.10)

where the fermionic fields η and χ were added to the bosonic field X to match the central

charge of the original σ-model and to ensure the exact matching of the effective superpo-

tentials. The path integral for the mirror Landau-Ginzburg model can be written as

∫ 4
∏

I=1

dYI

4
∏

A=1

dXAdηAdχAδ

(

4
∑

I=1

YI −
4
∑

A=1

XA−t

)

exp

(

4
∑

I=1

e−YI +

4
∑

A=1

e−XA(1+ηAχA)

)

(2.11)

2Let us notice that here and in the rest of the paper we denote the twistor space ĈP
(m|n)

=
n

C
(m+1|n) \ {(0, 0)}

o

/C∗, where {(0, 0)} is the origin in C
(m+1|n). This space describes the vacua of

the gauged linear σ-model with m + 1 bosonic chiral multiplets ΦR and n fermionic ones ΦA all of them

with unit charge under the abelian U(1) gauge symmetry. Its defining equation is φ̄RφR + φ̄AφA = r mod-

ulo the U(1) action φΣ → eiαφΣ. We can trade the D-term equation for a complexification of the group

action and obtain the symplectic quotient ĈP
(m|n)

as defined above. In the mathematical literature, one

defines the superprojective space CP
(m|n) =

n

C
(m+1|n) \

n

C
(0|n)

oo

/C∗, where C
(0|n) is sitting at the

origin φR = 0 of the commuting variables. This is a supermanifold contained in ĈP
(m|n)

. It is clear that

the choice of the sublocus containing the origin one has to remove, makes the difference between the two

spaces. The gauged linear σ-model chooses the sublocus closed under the action of the global U(m + 1|n)

symmetry of the D-term equations, namely the origin of the whole space. For more formal issues related

to supergeometries and all that, see for example [24] and references therein.
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This result was further elaborated in [11] where it was shown that the model has an

equivalent mirror picture which is entirely geometric, namely in the form of a superconifold

∫

dudvdηdχdl exp
{

l
(

uv − ηχ− t′
)}

(2.12)

where t′ = 1− e−t, {l, u, v} are bosonic twisted chiral superfields while {η, χ} are fermionic

twisted chiral superfields.3

Therefore, as far as the calculation of 1/2 BPS invariant observables in Type IIB

String theory on AdS5 ×S5 concerns, one can use the mirror geometry formulation for the

A-model, namely the B-model on the superconifold

uv − ηχ = t′ (2.13)

in the regime t′ ∼ t ∼ 0.

The geometry in such a regime gets singular. In these situations the string theory

target space gets represented by a blown up geometry via the conifold transition, like in

the cases which were analyzed in [27] and [13]. One can actually extend the geometric

transition to this grassmann odd version of the conifold.

The resolved super-conifold is defined by the relations

(

u η

χ v

)(

z

ζ

)

= 0 (2.14)

where (z, ζ) ∈
{

C(1|1) \ (0, 0)
}

/C∗ = ĈP
(0|1)

. Away from the singularity it gets mapped

to the singular cone uv − ηχ = 0, the singularity being replaced by ĈP
(0|1)

very much

like in the usual case. The last space is covered by two patches which we now describe.

If z 6= 0, then we can fix our coordinates4 at any given z0 6= 0 as (z0, ζ) which is a C(0|1)

patch, while if ζ 6= 0, then we can fix our coordinates at any given ζ0 6= 0 as (z, ζ0) which

is a C(1|0) patch. Clearly, on the intersection, the two patches are related by zζ = z0ζ0.

The last condition is the choice of representative upon the C∗ equivalent points exactly as

in the usual CP1.

Let us now apply the construction of the open string dual theory after geometric

transition, by following [13]. This is obtained by realizing the fermionic resolved conifold

geometry as a complex structure deformation of the local super-K3 geometry, namely

O(−2) ⊕ O(0) over ĈP
(0|1)

. The gluing conditions among the northern and southern

hemispheres which are bosonic and fermionic respectively are

ζ ′z = ζ0z0 (2.15)

ζ ′ψ′ = zψ + z0φ

ζ0φ
′ = z0φ

3Other mirror pictures were discussed also in [26]
4Notice that also in the usual bosonic geometric analog, one usually specifies the reference points to

z0 = 1, but this is not compulsory at all.
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where ψ′ and φ′ are fermionic while ψ and φ are bosonic variables. The complex structure

deformation is induced by the non-diagonal patching term in the second line. Let us call

X this superCalabi-Yau space. The invariant three-form Ω on X can be defined in this

parametrization as follows

Ω = z0dφ dψ dz = ζ0 dφ
′dψ′ dζ ′ (2.16)

in the two coordinate patches.

Similarly to the purely bosonic case, the geometry obtained by imposing the gluing

rules can be projected via the blow-down map

η = ζ0ψ (2.17)

χ = z0ψ
′

u = zψ

x = z0φ

which defines the following blown-down geometry

ηχ = ζ0ψz0ψ
′ (2.18)

= ζ ′zψψ′

= zψ(zψ + z0φ)

= u(u+ x)

which is the singular superconifold (2.13) with v = u+ x.

Finally, the resulting matrix model, which is obtained via reduction of the holomorphic

Chern-Simons theory [16] to the brane, is actually completely analog to the one obtained

in the analog bosonic case [12, 13].

The open topological B model describing the theory after geometric transition is there-

fore the reduction to the base ĈP
(0|1)

of

S =
1

2gs

∫

X

Ω ∧ Tr

(

A ∧ ∂̄A+
2

3
A ∧A ∧A

)

(2.19)

in the geometry defined in (2.15). For some comments on the Chern-Simons theory on

supermanifolds, see also [28]. Applying the same reasoning as in [20], one gets

S =
1

2gs

[
∫

ĈP
(0|1)

Tr(ψD̄φ) +

∮

TrW (φ)

]

(2.20)

where W (x) = 1
2x

2, which reduces to the hermitian gaussian matrix model. Notice the

fact that here, although the base geometry is half fermionic and half bosonic, this does

not influence the endpoint result, because as φ and ψ change statistics while patching,

their propagating contributions continue to cancel against the ghost determinants. The

important fact is that the ∂̄-operator on scalars still has a single (constant) zero mode.

– 7 –
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Therefore, after geometric transition of the superconifold, one gets the gaussian her-

mitian N ×N matrix model with measure

µ = dFe−
1

2gs
TrF 2

(2.21)

which corresponds to the Drukker-Gross one if gs = g2
YM as predicted by gauge string

duality.

3. D-brane dual observables

Let us now pass to the discussion of observables in our theory.

We take the boundary conditions for open strings in the coset σ-model as follows5

(Θ̄t)AJ = ǫABΘ∗B
Kδ

K
J (3.1)

where6 δ and ǫ are four by four constant matrices such that ǫ = aǫ−1 and δ = bδ−1 with a

and b complex numbers such that ab = −1.

In order to preserve the correct 1/2 supersymmetry, we chose

δ =

(

1 0

0 1

)

⊗

(

0 −1

1 0

)

and ǫ =

(

1 0

0 1

)

⊗

(

1 0

0 −1

)

(3.2)

This breaks the U(2, 2|4) isometry to OSp(4∗|4).

Notice that this remnant symmetry is exactly the same symmetry preserved by 1/2

BPS circular Wilson loops in N = 4 SYM of Drukker and Gross [5].

These A-branes wrap the Lagrangian submanifolds of the target space, as

OSp(4∗|4)

SO∗(4) × USp(4)
−→

U(2, 2|4)

U(2, 2) × U(4)
(3.3)

which is the fixed locus under the anti-involution

Θ̄ → δtΘ†ǫt and Θ → ǫ∗−1Θ̄†δ∗−1 (3.4)

which is explicitly a symmetry of the σ-model action since δ−1 = δ† = −δ and ǫ−1 = ǫ† = ǫ

in our case. Recall that SO∗(4) = SU(1, 1) × SU(2) and USp(4) = SO(5) (see [29]).

In the gauged linear σ- model the boundary conditions (3.1) become

(Φ†)RJ δ
tJ
I = κ†

R

S Φ̄S
I and (Φ†)RAǫ

tA
B = κ†

R

S Φ̄S
B (3.5)

which is the fixed point of the transformation

ΦI
R → (δ†)IJ(Φ̄†)JSκ

S
R and ΦA

R → (ǫ†)AB(Φ̄†)BS κ
S
R (3.6)

5Note that these boundary condition are different from the ones which was used in [9] as (Θ̄t)A
J =

ǫABΘB
Kδ

K
J . It can be shown that these two type of boundary conditions are producing different types of

D-branes.
6We work in the conventions Θ† = iΘ̄, Θ̄† = iΘ and (ψζ)† = −ζ†ψ† for fermionic ψ and ζ.
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while (eV ) → κeV κ† and κ is, because of the reality condition on the fields, a constant

element in O(4). This breaks the gauge symmetry to ones preserving κ, namely Λ ∈ U(4)

such that ΛtκΛ = κ.

Actually, upon the reduction to the Coulomb branch
(

ĈP
(3|4)

)4

//S4 (3.7)

κ selects the twisted sector to which the A-branes get coupled. Despite the lack of a

manifest target space interpretation, we choose κ to be the cyclic permutation and we

restrict our analysis to this sector of the theory, that is a single copy of the twistor space

ĈP
(3|4)

. Under this projection the map (3.6) becomes the standard anti-involution, under

which the Kähler form is odd, whose fixed locus identifies the lagrangian cycle.

This lagrangian cycle can be traced back in the mirror geometry as in [30]. Therefore,

applying to the mirror dual at hand, the lagrangian submanifold in ĈP
(3|4)

gets mapped

to the non compact holomorphic cycle

η = 0 , uv − ηχ = t′ (3.8)

in the superconifold mirror picture. In the singular limit these turn out to be C(1|1) non

compact branes. Their fate after geometric transition is to stay non compact, so these are

along a fibration on the base ĈP
(0|1)

via a complex curve in the fiber direction which has

to compensate the superdimension counting.

Therefore, if in the A-model we add M D5-branes, these correspond after the duality to

M B-branes along the above non-compact cycles. Now, the open string at hand therefore,

on top of the sector of N D-branes along the base, also has the open strings connecting

them with the dual image of the M D-branes. Correspondingly, the reduced gauge field in

the holomorphic Chern-Simons theory becomes

A =

(

A Y

Ỹ 0

)

(3.9)

where the gauge field components Y and Ỹ t are the M × N components with mixed

boundary conditions. Being the transverse branes non-compact, the relative gauge field

has been kept frozen. Therefore the action gets reduced as

ShCS(A) = ShCS(A) +

∫

X

Ω ∧ Y D̄AỸ (3.10)

where D̄A is the covariant ∂̄ operator.

Dimensionally reducing to the base and integrating the reduced (Y, Ỹ ) sector one

generates the corresponding observable in the matrix model. In formulas, we have therefore
∫

dFe−
1

2gs
TrF 2

OM (F ) (3.11)

By expanding the observable in characters as

OM (F ) =
∑

i,{ni}

OM (i, {ni})
∏

i

TreniF (3.12)
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one obtains the expansion of the D5-brane amplitudes in terms of 1/2 BPS circular Wilson

lines (see section 4 in [5]). The explicit dictionary needs a much deeper elaboration on the

specific form of the observables which will follow from the analysis of the reduced theory

on the base of the resolved superconifold. The prototype of such an analysis for the usual

conifold is in [27], although to be adapted to our case.

4. Conclusions and open questions

In this letter we proposed a dual picture for the calculation of 1/2 BPS open string ampli-

tudes on AdS5 × S5 with boundary conditions (3.1) in the large curvature regime. These

has been shown to reduce to observables in the hermitian gaussian matrix model. Identi-

fying gs = g2
YM, we can interpret those topological string amplitudes as 1/2 BPS circular

Wilson loops.

There are two consistency checks of this result which are independent on the duality

chain we formulated. The first is a symmetry argument, which we already recalled in the

paper, that is the fact that AdS2 × S4-branes break exactly the same 1/2 superconformal

symmetry as the 1/2 BPS circular Wilson loops do.

The second has to do with the ability of the matrix model to reproduce topological

strings amplitudes. Actually, in order for a candidate set of amplitudes to be compatible

with the topological gauge symmetry, these have to satisfy the consistency conditions of

BCOV [21], namely the holomorphic anomaly equations. This is a strict constraint on

any dual picture one might find for topological string amplitudes. The fact that our

proposed matrix model passes such a non trivial test is due to the analysis performed

in [22] where this was shown much more in general for the matrix models. Actually, the

D5-branes amplitudes then gets reduced to matrix integrals at finite N . The coinciding

genus expansion is consistent for the corresponding non local observable insertions which

we get in the form TrenF =
∮

dx
2πi
enxTr 1

F−x
which is the natural form of the open string

generated observables. It would be interesting to further elucidate the properties of the

specific realization via the gaussian hermitian matrix model also in direct comparison with

the analysis in [31].

It is clear that the reduction of the calculation of specific perturbative SYM amplitudes

via a topological string model on the twistor space ĈP
(3|4)

recalls the duality for MHV

amplitudes which started in [2]. The relation with this analysis of what it has been discussed

here could led to a better understanding of the features and limits of topological string

approach to the string realization of the perturbative gauge theory.

The results obtained here are still partial and deserve further investigation.

In particular, we have focused on a particular twisted sector of the string on the

geometric quotient
(

ĈP
(3|4)

)4
//S4, while the complete theory has all the other sectors

too. The SYM dual interpretation of those sectors has to be understood and found. Also,

as we have discussing in section 3, there are different possible choices of BPS boundary

conditions parametrized by the ǫ and δ matrix parameters which are corresponding to

different D-brane configurations. These could be used also to produce lower BPS sectors

to be implemented in the gauge/string correspondence as lower BPS Wilson loops [32]
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which some of them have been described as D-brane configurations. Also one can combine

different D-brane configurations to get less supersymmetric objects, an example of which

can be obtained by combining the AdS4 boundary conditions in [9] and ours which one may

generate lower BPS D-branes configurations. Moreover, a precise analysis of the D5-branes

observables (3.12) has to be performed in order to produce a detailed D-branes / circular

Wilson loops dictionary. This analysis passes by the complete reduction to the base of the

holomorphic Chern-Simons theory on the resolved superconifold. In particular, this passes

by the calculation of the determinant of the relevant ∂̄A-operator on supermanifolds. These

issues will be discussed in the nearest future.

An interesting issue to study would also be the clarification of how to add non per-

turbative contributions in the topological strings to get the instanton corrected version of

1/2 BPS circular Wilson loops [17, 6]. The gauge amplitude contains, on top of the matrix

model integral, also the inverse of the gauge group volume and an instanton contribution.

The first should be calculated in the complete topological string by the contribution of

the pure Coulomb phase, very much like as in [4]. The instanton contribution should be

obtained by including D-instantons in the Berkovits-Vafa context.

As a last comment, let us stress that we conjectured in this letter that the conifold

transition extends to supergeometries. As such, one should be able to test it for the A-

model too, along the lines of [4, 27]. That is one should be able to recast in such a different

case, the amplitudes in the Chern-Simons theory on S(1|2) in terms of the gauged linear

σA-model amplitudes on the resolved superconifold. This is another open issue we are

letting for future publications.
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